Translational Clinical Oncology

Dose Selection in Early Oncology Trials

Yan Ji, Ph.D. Novartis Institutes for Biomedical Research ASCPT, Washington DC March 16, 2017

Oncology drug development has made substantial progress

More efficacious and safer treatment for longer-term use is necessary

Oncology dose finding paradigm has been changing

From identifying maximum tolerated dose (MTD) to optimizing dose regimen

- MTD may not be the optimal dose
- Maximum efficacy may be achieved below the MTD
- Optimal biologic dose to saturate target and block pathway
- Cancer may become chronic disease
- Long-term cumulative toxicity is important to address

Post marketing trials were required to optimize dose in recent oncology submissions

Compound	M&S summary	Post Marketing Requirements	
Axitinib	PK and E-R modeling enabled dose escalation schemes	Dose escalation schemes approved	
Trametinib	E-R relationship with biomarkers	No evident impact	
Vismodegib	Exposure/Responder analysis	No evident impact	
Trastuzamab emtansine	Narrow therapeutic window	Impact on dose uncertain, pending additional analyses	
Cabozantinib	~80% dose reductions	Possibly new dose trial	
Pazopanib	Dose modifications not supported	Develop 100mg formulation	
lpilimumab	ER suggests higher dose	Explore higher dose	
Vandetanib	No exposure-efficacy, yes with toxicity	Explore other regimens	

NOVARTIS

4 | Dose finding in early oncology trials | Yan Ji | ASCPT March 16, 2017|

Dose optimization in oncology is challenging

- Narrow therapeutic index
- High variability of drug response
 - Heterogeneity of the disease and patients
 - Phase I patients not representing intended population
 - Heavily pre-treated and concomitant medications
- Development of drug resistance
- Complexity of the biology
- Linkage of biomarkers to clinical outcome can be difficult
- Limitation in study design due to severity of disease
- Urgency to deliver effective treatments to patients

M&S in early oncology trials can inform dose optimization

- Characterize exposure-response and therapeutic window
- Characterize time course of response
- Identify the biomarkers that correlate to pathway inhibition
- Leverage preclinical data
- Characterize inter-patient variability
- Inform both dose and schedule

Case Study 1: ABL001

Allosteric Bcr-Abl inhibitor for Chronic Myeloid Leukemia

Chromosomal Translocation

Biomarker of response <u>Molecular Response</u>

7 | Dose finding in early oncology trials | Yan Ji | ASCPT March 16, 2017|

Molecular response: primary efficacy endpoint

Measurement of Bcr-Abl transcript

- Assessed in peripheral blood by RT-PCR
- International scale: log reduction of transcript levels

>10%: failed MR

≤10%: MR1

≤0.1%: MR3 (MMR)

≤0.01%: MR4 (CMR)

≤0.0032%: MR4.5

PKPD semi-physiological model

- Mimics leukemic cell maturation: Maturation time
- Reproduces disease progression: Immature cells turnover rate
- Accounts for existing resistance: Fraction of sensitive cells

- Describe BCR-ABL(%) kinetics
- Estimate concentration for stable disease
- Provide exposure target for dose and schedule optimization

Individual PD profiles

Time (months of 28d)

Individual average concentration for stable disease vs. PK

- Population average concentration for stable disease = 1 ng/ml
- Individual values ranging from 0.07 to 61 ng/ml due to large variability on estimated individual disease progression

11 | Dose finding in early oncology trials | Yan Ji | ASCPT March 16, 2017 |

Clinical PKPD analysis results are consistent with preclinical data

- Required average concentration for stable disease = 1 ng/ml
- Individual values ranging from 0.07 to 61 ng/ml (0.014 to 122 nM)
- IC90 for pSTAT5 inhibition KCL-22 xenograft mice after PPB correction:
 121 ng/mL (free: 11 nM)
- In vitro gIC50 KCL-22 cell line expressing WT BCR-ABL: 1 ng/mL (2.1 nM)

OVARTIS

PK/PD analysis supported dose selection for Phase I expansion

• Clear advantage of 40 mg vs. 20 mg BID

BID Dosing	Percent (95% CI) patients with at least 1 log 10 reduction			
Tx Duration	20 mg	40 mg	80 mg	All doses
6 months	33% (24-42)	41% (31-51)	48% (38-58)	40.6%
12 months	42% (32-52)	53% (43-63)	56% (46-66)	50.3%

Case Study 2: WNT974

- WNT ligands activate the pathway
- Porcupine is required for WNT ligand formation
- WNT974 blocks Porcupine activity
- RNF43 and RSPO regulate Wnt pathway signaling

PK modeling and ER analysis to support dose finding

- Exposure-response analysis identified a therapeutic window
- PK simulations found a dose yielding exposures within that window
- That dose has been selected as the recommended dose for expansion

Analysis	Objective	
Population PK modeling	To characterize PK	
ER analysis for biomarker	To explore and characterize the relationship of exposure vs. PD biomarker	
Logistic regression for safety	To explore and characterize the relationship of exposure vs. AE	

Population PK modeling

^{16 |} Dose finding in early oncology trials | Yan Ji | ASCPT March 16, 2017 |

Exposure-response analysis for PD biomarker and safety

Integrative analysis of PK, PD and safety data supported dose selection for Phase I expansion

Steady State, 10 mg QD

Endpoint	Criteria	Exposure threshold
Biomarker	>50% maximal inhibition with 95% probability	Ctrough,ss > 2.6 ng/mL
AE	50% probability that <25% patients have Gr>=2	Cmax,ss < 118 ng/mL

- Prospective M&S in early oncology trials informs dose optimization
- M&S integrates data including PK, biomarker, efficacy and safety
- Models are continuously refined based on emerging data
- Greater need to apply quantitative methods to understand drug response

Thank you

- Varsha Iyer, Christophe Meille (ABL001)
- The individuals who worked to discover and develop these medicines

NOVARTIS

• The patients who participated in our clinical trials